REVIEW:	"An Evaluation of a Field-Based Aquatic Benchmark for Specific
	Conductance in Northeast Minnesota" (November 2015). Prepared by
	B. L. Johnson and M. K. Johnson for WaterLegacy.
PREPARER:	Susan M. Cormier, Ph.D.
	National Center for Environmental Assessment—Cincinnati,
	Office of Research and Development, U.S. EPA
DATE:	February 4, 2016

Introduction

The evaluation by Johnson and Johnson (2015) examined the ionic mixtures of mining effluents and their impact on northeast Minnesota waters. The authors made the following inference: Because organisms (benthic macroinvertebrates) are extirpated in Appalachian streams by mineral additions that increase specific conductivity (SC)¹ to 300 microsiemens per centimeter (μ S/cm) where natural background is 146 μ S/cm (U.S. EPA, 2011), then organisms in waters of northeast Minnesota waters are likely to be affected by the same levels given a similar mineral composition.

"Northeast Minnesota waters" defined by Johnson and Johnson (2015) refers to a portion of the Northern Lakes and Forests Level III Ecoregion 50 (Omernik, 1987), which includes parts of the Boundary Lakes and Hills (50n), the northern portion of Toimi Drumlins (50p), and North Shore Highlands (50t). The Minnesota Pollution Control Agency (MPCA, 2016) describes the Northern Lakes and Forests on their website:

"This heavily forested ecoregion is made up of steep, rolling hills interspersed with pockets of wetlands, bogs, lakes and ponds. Lakes are typically deep and clear, with good gamefish populations. These lakes are very sensitive to damage from atmospheric deposition of pollutants, storm water runoff from logging operations, urban and shoreland development, mining, inadequate wastewater treatment, and failing septic systems" (MPCA accessed 1/5/2016).

¹ This review uses conductivity as a measure of ionic concentration rather than as description of an electrical property of water. As ionic concentration increases, conductivity increases. Both specific conductivity and specific conductance are often used synonymously in the open literature indicating normalization or measurement at 25°C. Conductivity is a property of water expressed in units of micro-Siemens per centimeter (μ S/cm). Conductance of a sample or electrical component is measured as Siemens (S). All measurements in this review refer to specific conductivity, μ S/cm at 25°C and background is estimated as the 25th centile of SC measurements.

The Johnson and Johnson (2015) evaluation describes the ionic mixture of effluents in northeast Minnesota. In Appalachia (U. S. EPA, 2011) and northeast Minnesota, the ionic mixture is dominated by bicarbonate and sulfate anions and calcium and magnesium cations (Thingvold et al., 1979). This finding is consistent with dominant ions for Ecoregion 50 (including Minnesota, Wisconsin, and Michigan) reported by Griffith (2014), whose study Johnson and Johnson (2015) did not cite. The data set used in the Johnson and Johnson study had a reported mean (note: not the 25th centile) background SC of 68 μ S/cm in the defined regions of Ecoregion 50 (parts of 50n, 50p, and 50t). This is less than the 25th centile SC of the data set used in the development of the central Appalachian benchmark (146 μ S/cm). The Johnson and Johnson (2015) report provides evidence that where the SC is high, there are disturbed environments. In particular, the mean and maximum SC in their study area increase below mineral effluent discharges associated with mines in the northeast region of Minnesota.

The study also provides evidence that benthic invertebrates are adversely affected where SC is greater than background. Where SC is greater than background, benthic invertebrate diversity and abundance decreases and the proportion of dominant genera increases. Attachment A, Table 1 of Johnson and Johnson (2015) identified the genera occurring in both central Appalachia and northeast Minnesota.

Overall, the weight of evidence supports the inference that effluents that increase waterbody SC to more than 300 μ S/cm have adverse effects in northeast Minnesota waters. Using effect levels developed in central Appalachia, more than 5% of these shared genera are likely to be extirpated in waters with SC >300 μ S/cm.

Confirmation using independent data sets

Benthic invertebrate and water quality data sets collected by the MPCA had been made available to the U.S. Environment Protection Agency (EPA) for research on stressor-response relationships. These data are used here to assess the validity of the Johnson and Johnson's findings. In Ecoregion 50, the MPCA data set consists of 40,585 water chemistry samples collected from less than 2000 sites between 1996–2013, with most of the water chemistry samples collected from repeated sampling in the same location in the same year between June and September. Annual site averages (geometric means) for SC and several other measured water quality parameters were calculated. The mean, median, minimum, maximum, and several quantiles for the population of sites in the data set are shown in Table 1.

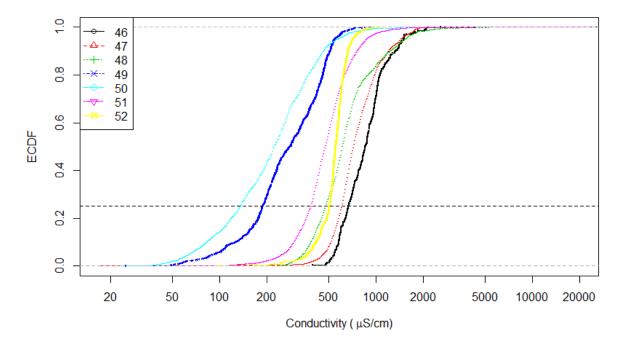

Parameter	N	Mean	Min	5 th	10 th	25 th	50 th	75 th	90 th	95 th	Max
SC (µS/cm)	1,409	210	23	64	83	135	222	338	461	567	1,458
Alk (mg/L, unfiltered)	293	78.4	7.9	17.1	24.8	47.0	90.8	142	220	249	363
Chl a (µg/L)	200	2.3	0.5	0.8	1.0	1.5	2.3	3.7	5.2	6.6	14.6
DO (mg/L)	1,362	8.8	0.1	4.7	5.8	7.5	9.0	10.2	11.3	11.9	17.2
NH ₃ (mg/L)	616	0.06	0.00	0.02	0.03	0.04	0.05	0.07	0.14	0.22	1.24
NO _x (mg/L)	850	0.09	0.00	0.02	0.03	0.05	0.07	0.15	0.34	0.63	20.8
OP (filtered, mg/L)	149	0.015	0.004	0.005	0.006	0.010	0.012	0.025	0.045	0.078	0.32
OP (unfiltered, mg/L)	339	0.013	0.001	0.005	0.005	0.007	0.011	0.020	0.037	0.058	0.61
TDS (mg/L)	165	170	49	62	70	117	200	250	307	372	780
TKN (mg/L)	632	0.77	0.20	0.43	0.50	0.59	0.74	0.96	1.29	1.54	3.91
TN (mg/L)	799	0.84	0.12	0.44	0.50	0.62	0.79	1.05	1.49	1.95	21.5
TP (mg/L)	1,151	0.043	0.003	0.015	0.019	0.026	0.042	0.066	0.102	0.154	0.91
Transp (cm)	1,768	71.5	4.9	33.6	45	60	79	99	100	100	122
TSS (mg/L)	1,217	6.4	1.0	1.7	2.0	3.0	5.1	10.4	28.3	50.9	1,076
Turbidity (NTU)	223	8.1	0.6	1.7	1.9	2.9	5.9	17.1	52.2	117.0	453

Table 1. Summary statistics of annual geometric mean water chemistry parameters for Ecoregion 50 (MPCA, 1996–2013) prepared for this review. Mean, minimum, 5th–95th quantiles, and maximum are shown.

Alk = alkalinity; Chl a = chlorophyll a; DO = dissolved oxygen; NH_3 = ammonia; NO_X = oxides of nitrogen; OP = orthophosphate; TDS = total dissolved solids; TKN = total Kjeldahl nitrogen; TN = total nitrogen; TP = total phosphorous; Transp = transparency; TSS = total suspended solids; NTU = nephelometric turbidity units.

Background conductivity

The 25th centile of all samples from the MPCA data set (years: 1996–2013) was used to estimate the background SC for seven Level III ecoregions in Minnesota (see Figure 1). The estimated background SC for the entire Level III Ecoregion 50 in northeastern Minnesota is 135 μ S/cm (90% confidence interval [CI] 130–140 μ S/cm, N = 1,409). A number of the MPCA sampling sites had paired biological and chemical measurements. The 25th centile estimated background SC for sites with paired MPCA biological and chemical measurements was 108 μ S/cm (90% CI 97–116 μ S/cm, N = 735). Estimates were not made for the Level IV Ecoregions. Using either data set, Ecoregion 50 has the lowest background SC among the ecoregions in Minnesota (see Figure 1).

Figure 1. Empirical cumulative distribution function (ECDF) of annual geometric mean conductivity values in ecoregions of Minnesota. The dark horizontal dashed line is the 25th centile of ECDF. Ecoregion 50 is the Minnesota ecoregion with the lowest background SC and is plotted at the far left in turquoise (data: MPCA, 1996–2013).

Another water chemistry analysis was published in 2014 by Griffith for the entire Ecoregion 50 extending from northeastern Minnesota through Wisconsin and into northern Michigan. These published results were generated from data sets compiled from several EPA surveys that used probability-based sampling designs (Griffith, 2014). The 25th centile SC for that data set at the Level III Ecoregion 50 was 111 μ S/cm (N = 151), which is less than in the Appalachian study data set.

In comparison, Table 2 contains values from the Minnesota Environmental Quality Board MEQB (1979), which were collected between 1975 and 1977. This earlier sampling effort is confined to an area of interest consisting of 14 watersheds that are included in the Johnson and Johnson evaluation (2015). The median stream SC is reported as 55 μ S/cm. Johnson and Johnson (2015) report a mean of 68 μ S/cm using data from a comparable time period. Both values are less than the 25th centile background in Appalachia streams (U.S. EPA, 2011).

Based on these independent data sets, it appears that, currently and 40 years ago, the background SC in the study area has been less than the background estimated from the data set used to derive the conductivity benchmark for the combined Appalachian Ecoregions 69 and 70 (U. S. EPA, 2011). This confirms the Johnson and Johnson claim.

Table 2. Data from Minnesota Environmental Quality Board collectedbetween 1975 and 1977 from streams in "Group C stations" and reproducedhere for the reader's convenience

Parameters	Median stream value
Specific conductivity (µS/cm) (25°C)	55
Al (µg/L)	90
As (µg/L)	0.8
Ca (mg/L)	6.0
Cd (µg/L)	0.03
Cl (mg/L)	1.6
Co (μg/L)	0.4
Cu (µg/L)	1.3
Fe (µg/L)	560
F (mg/L)	310
Hg (µg/L)	0.08
K (mg/L)	0.6
Mg (mg/L)	3
Mn (µg/L)	35
Na (mg/L)	1.6
Ni (µg/L)	1.0
Pb (µg/L)	0.5
$Zn (\mu g/L)$	2.0
Alkalinity (mg/L))(CaCO ₃)	19
TOC (mg/L)	15
P-total (µg/L)	20
Total Nitrogen (mg/L)	0.79
SO ₄ (mg/L)	6.6
pH	6.9
Color (Pt-Co scale)	90.2
Silica (mg/L)	6.3

TOC = total organic carbon; P-total = total phosphorous; Pt-Co = platinum-cobalt.

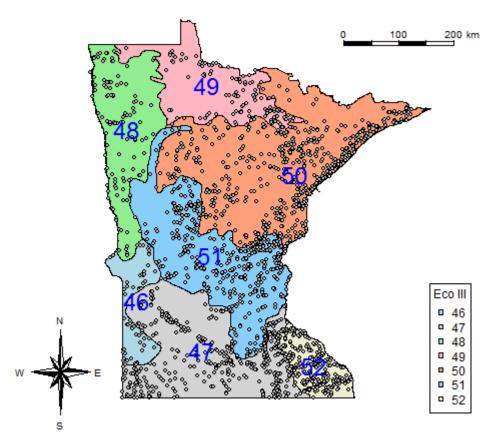
Biological effect

Extirpation is the loss of a taxon from its normal habitat, such as a portion of a stream or geographic area. For this review, the concentration resulting in extirpation is defined as the SC level above which less than 5% of observations of a genus were made in an ecoregion, an extirpation concentrations (XC₉₅) (U. S. EPA, 2011).

Johnson and Johnson (2015, Attachment A, Table 1 of their report) identified the benthic macroinvertebrate genera occurring in both Appalachia and northeast Minnesota streams. They used XC₉₅ values for Appalachian genera to evaluate extirpation of the same genera in northeast Minnesota streams. Using effect levels developed in central Appalachia, more than 5% of these shared genera are likely to be extirpated in waters with SC >300 μ S/cm. Because Johnson and Johnson did not use Minnesota data to calculate effect levels for individual genera in northeastern Minnesota streams, there is uncertainty whether the species comprising a genus in Minnesota is similar enough to those in West Virginia for comparison. This point is important because the extirpation concentration (XC₉₅) values represent the effect level for the most tolerant species in that genus.

We were able to overcome this limitation for this review because we had a paired biological and SC data from Ecoregion 50 in Minnesota. Using the MPCA data set, we directly calculated XC_{95} levels for benthic invertebrates in northeastern Minnesota streams. Then, we used these Ecoregion 50-Minnesota XC_{95} values to predict the SC at which 5% of benthic invertebrate genera are likely to be extirpated.

Estimation of specific conductivity (SC) likely to cause extirpation


Paired biological and chemical data were analyzed using the MPCA data set from 1996–2013 (see Figure 2) and using the methods described in EPA (2011). XC₉₅ values were calculated for 164 genera (see Table 3) that occurred at \geq 25 sites in the MPCA paired data set (see Figure 2) using the methods in EPA (2011). Although the number of sites was modest (number of samples was 734, number of sites was 596) and the range of SC values is limited, the tolerance range was defined for more than 12% of genera that were analyzed, which allowed confident estimation of the SC that would result in the loss of 5% of genera.

Estimation of the specific conductivity (SC) likely to extirpate 5% of genera

In this review, extirpation of 5% of genera was used as the effect threshold. The SC level predicted to cause 5% extirpation is referred to as the hazardous concentration (HC₀₅) (U.S. EPA, 2011). Using the available data set, the interpolated 5th centile of the ranked XC₉₅ values (HC₀₅) for Ecoregion 50 in Minnesota is 320 μ S/cm. Note that even if a genus is not extirpated at the HC₀₅, the abundance or ecoregion occurrences may still be reduced. The

Minnesota HC₀₅ for Ecoregion 50 (320 μ S/cm) is similar to the HC₀₅ of the Appalachian study (295 μ S/cm).

Most samples in the MPCA data set were collected during August and September, and many salt-intolerant genera may not have been collected because they are more likely to be collected earlier in the year. Therefore, this HC_{05} may be higher than would be obtained with a data set that included more mayfly genera which are collected in the spring and tend to be among the more intolerant genera. Also, the estimated HC_{05} is for this review only and it does not represent a benchmark for Ecoregion 50. Additional analyses are recommended to evaluate the seasonal effects in the data set that was used for the estimate.

Figure 2. Ecoregion 50 is contained in the orange area in the northeast portion of Minnesota. Circles represent paired biological and water quality sampling sites. There are fewer samples in the area bordering Canada, often referred to as the boundary waters, which are less accessible for sampling.

Genus	XC95 μS/cm	Samples	Genus	XC95 µS/cm	Samples	Genus	XC95 µS/cm	Samples
Dolophilodes	191	82	Protoptila	717	106	Rheotanytarsus	912	477
Epeorus	201	94	Psychomyia	717	71	Tvetenia	912	347
Rhyacophila	254	35	Pycnopsyche	717	51	Nilothauma	1,008	71
Ophiogomphus	272	73	Chimarra	719	277	Dicranota	1,029	70
Serratella	283	40	Ephemera	719	44	Chrysops	1,110	38
Boyeria	298	117	Ephemerella	719	144	Clinotanypus	1,110	31
Agnetina	302	25	Nyctiophylax	719	30	Gammarus	1,110	40
Trissopelopia	327	25	Paratendipes	719	67	Sigara	1,110	52
Xenochironomus	335	36	Pteronarcys	719	82	Ceraclea	1,134	140
Larsia	338	25	Stenonema	719	184	Neophylax	1,134	26
Paraponyx	338	33	Dixa	736	28	Nigronia	1,134	101
Eurylophella	357	151	Neoplea	736	71	Potthastia	1,134	30
Stictochironomus	361	46	Stenochironomus	736	205	Stempellina	1,134	112
Helisoma	374	95	Xylotopus	736	64	Chironomus	1,138	86
Lopescladius	390	60	Hexagenia	829	32	Zavrelimyia	1,138	34
Leptophlebia	416	43	Stenacron	859	125	Micrasema	1,182	162
Leucrocuta	435	124	Acroneuria	867	225	Antocha	1,185	123
Labiobaetis	456	55	Atherix	867	211	Cryptochironomus	1,185	83
Plauditus	464	38	Endochironomus	867	53	Dicrotendipes	1,185	197
Triaenodes	502	58	Isonychia	867	98	Glyptotendipes	1,185	47
Nilotanypus	510	50	Neureclipsis	867	127	Taeniopteryx	1,185	33
Nectopsyche	529	56	Labrundinia	872	198	Conchapelopia	1,353	51
Liodessus	559	73	Oecetis	872	329	Gyraulus	1,353	107
Procloeon	568	131	Paragnetina	872	161	Hydropsyche	1,353	294
Callibaetis	620	26	Sublettea	872	28	Limnephilus	1,353	25
Cryptotendipes	620	35	Tricorythodes	872	141	Nanocladius	1,353	140
Valvata	620	26	Enallagma	879	53	Tanytarsus	1,353	511
Ancyronyx	626	45	Parakiefferiella	879	134	Thienemannimyia	1,353	524
Hexatoma	626	37	Brachycentrus	882	113	Hydraena	1,370	86
Atrichopogon	630	29	Macronychus	882	159	Ablabesmyia	1,412	297
Acentrella	650	164	Rheocricotopus	882	163	Helicopsyche	1,412	213
Cardiocladius	650	30	Probezzia	912	40	Maccaffertium	1,412	244
Glossosoma	650	191	Psectrocladius	912	105	Microtendipes	1,412	412

Table 3. XC₉₅ values for 164 genera with \geq 25 occurrences in Ecoregion 50 of Minnesota prepared for this review

Genus	XC ₉₅ µS/cm	Samples	Genus	XC95 µS/cm	Samples	Genus	XC95 µS/cm	Samples
Pseudochironomus	1,412	27	Anacaena	1,594	39	Dixella	1,998	102
Stenelmis	1,412	302	Anopheles	1,594	79	Eukiefferiella	1,998	198
Tribelos	1,412	66	Baetis	1,594	402	Ferrissia	1,998	348
Thienemanniella	1,417	259	Ceratopsyche	1,594	436	Haliplus	1,998	109
Micropsectra	1,426	275	Cladotanytarsus	1,594	97	Hydatophylax	1,998	88
Polypedilum	1,442	628	Dubiraphia	1,594	371	Iswaeon	1,998	87
Cricotopus	1,447	508	Gyrinus	1,594	60	Limnophyes	1,998	69
Hemerodromia	1,447	308	Hyalella	1,594	436	Mystacides	1,998	95
Parachironomus	1,447	34	Lype	1,594	62	Orconectes	1,998	54
Pentaneura	1,447	56	Simulium	1,594	463	Orthocladius	1,998	219
Corynoneura	1,451	274	Somatochlora	1,594	35	Paraleptophlebia	1,998	217
Cheumatopsyche	1,458	422	Tipula	1,594	120	Paramerina	1,998	120
Hydroptila	1,458	223	Physa	1,818	387	Parametriocnemus	1,998	286
Isoperla	1,458	42	Caenis	1,825	369	Phaenopsectra	1,998	187
Optioservus	1,458	401	Acerpenna	1,998	251	Polycentropus	1,998	138
Oxyethira	1,458	233	Aeshna	1,998	79	Procladius	1,998	205
Paratanytarsus	1,458	238	Baetisca	1,998	41	Pseudocloeon	1,998	82
Amnicola	1,527	80	Belostoma	1,998	75	Ptilostomis	1,998	97
Bezzia	1,527	94	Brillia	1,998	118	Sialis	1,998	88
Cordulegaster	1,527	29	Caecidotea	1,998	39	Stempellinella	1,998	330
Fossaria	1,527	49	Calopteryx	1,998	259	Synorthocladius	1,998	47
Lepidostoma	1,527	267	Centroptilum	1,998	67			

Table 3. XC₉₅ values for 164 genera with \geq 25 occurrences in Ecoregion 50 of Minnesota prepared for this review (continued)

Conclusion

The results of the analyses performed for this review support the conclusions of Johnson and Johnson (2015) concerning the effects of SC on benthic invertebrates.

 Independent data sets from different decades confirm Johnson and Johnson's conclusion that the background SC in Ecoregion 50 in Minnesota is less than the background of the data set used to develop the SC benchmark for Ecoregions 69 and 70 in Central Appalachia. Hence, a benchmark value for SC in Ecoregion 50 is not expected to be greater than the benchmark for central Appalachia, i.e. 300 μS/cm.

- 2. Likewise, the inference that 5% extirpation of benthic invertebrates would occur at similar conductivity levels in central Appalachia and Ecoregion 50 in Minnesota was supported by analysis of an independent data set of paired benthic invertebrate and SC data from Ecoregion 50 in Minnesota. We estimated that more than 5% of genera would be extirpated in streams greater than 320 μ S/cm. However, additional analyses are needed to evaluate the effect of seasonal collection.
- 3. Johnson and Johnson evaluated biological effects where SC was greater than background at several mine sites and streams draining in or near the mines. SC associated with discharges and mine pits exceeded 300 μ S/cm. For some sites, dilution may reduce the SC below 300 μ S/cm in the waterbody, but the data are not shown and may not be available for all sites. In other cases, SC is very high (>1,000 μ S/cm) and biological effects have been reported by MPCA. The severity of the effects are consistent with effects expected for increased level of SC.
- 4. Metal contamination, habitat alteration, temperature, and nutrient enrichment may contribute to biological effects at some of the mine sites. These stressors may exacerbate the effect, but the extirpation due to SC would still occur if these stressors were removed based on removal of other stressors and persistent effects observed in Appalachia when only conductivity was high and other stressors were low or absent (U.S. EPA, 2011; Timpano et al., 2015; Cook et al., 2015).

Johnson and Johnson (2015) make several recommendations based on their findings. These are policy decisions and are not part of this scientific review.

References

Cook, NA: Sarver, EA; Krometis, LH; Huang, J. (2015) Habitat and water quality as drivers of ecological system health in Central Appalachia. Ecol Eng 84:180–189.

Griffith, MB. (2014) Natural variation and current reference for specific conductivity and major ions in wadeable streams of the conterminous U.S. Freshw Sci 33(1):1–17.

Johnson, BL; Johnson, MK. (2015) An evaluation of a field-based aquatic benchmark for specific conductance in northeast Minnesota. (November 2015). Prepared for WaterLegacy, St. Paul, MN.

MPCA (Minnesota Pollution Control Agency). (2016) EDA: Guide to typical Minnesota water quality conditions. Accessed January 7, 2016. <u>https://www.pca.state.mn.us/quick-links/eda-guide-typical-minnesota-water-quality-conditions</u>.

MEQB (Minnesota Environmental Quality Board). (1979) The Minnesota regional copper-nickel study 1976–1979. Volume 1. Executive Summary. August 31, 1979. St. Paul, MN: Minnesota Environmental Quality Board, State Planning Agency. Pp. 18. <u>https://d-commons.d.umn.edu/handle/10792/2769.</u>

Omernik, JM. (1987) Ecoregions of the conterminous United States. Ann Assoc Am Geograph 77:118–125.

Thingvold, D; Sather, N; Ashbrook, P. (1979) Water quality characterization of the copper-nickel water quality research area. St. Paul, MN: Minnesota Environmental Quality Board.

Timpano, AJ; Schoenholtz, SH; Soucek, DJ; Zipper, CE. (2015) Salinity as a limiting factor for biological condition in mining-influenced central Appalachian headwater streams. J Am Water Resour Assoc 51:240–250. DOI: 10.1111/jawr.12247.

U.S. EPA (Environmental Protection Agency). (2011) A field-based aquatic life benchmark for conductivity in Central Appalachian streams. [EPA/600/R-10/023F]. Washington, DC: Office of Research and Development, National Center for Environmental Assessment. <u>http://cfpub.epa.gov/ncea/cfm/recordisplay.cfm?deid=233809.</u>